# **Phytochemical profile, antioxidant activity and cytotoxicity against** keratinocytes, fibroblasts and endothelial cells of picoplanktonic marine cyanobacteria

Janaína Morone<sup>1,2</sup>, Graciliana Lopes<sup>1,2</sup>, Marco Preto<sup>2</sup>, Vitor Vasconcelos<sup>1,2</sup>, Rosário Martins<sup>2,3</sup>

<sup>1</sup>Faculty of Sciences, University of Porto, Porto, Portugal

<sup>2</sup>Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal

<sup>3</sup>Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Porto, Portugal

### Introduction

Human skin is exposed to various damaging environmental factors and therefore requires mechanisms to protect against such damage. In recent years, cyanobacteria have been an alternative approach in obtaining compounds with applications in the skin care products. Many species of cyanobacteria are highly exposed to solar radiation and desiccation, producing compounds that allow protection against UV radiation, compounds



## **Results and discussion**



capable to prevent extreme dehydration and oxidative stress. Some of these compounds have already revealed moisturizing, photo-protective, antioxidant and regenerative properties, making them interesting in the protection and homeostasis of the integumentary system and its derivatives. In this work we aimed to evaluate the potential of Cultura 70% ethanolic extract of picocyanobacterial strains of the genera Cyanobium and Synechocystis for skin health care applications. Cyanobacteria strains were isolated from Portuguese environments and are maintained in CIIMAR's Microalgae e Collection (LEGE CC, http://lege.ciimar.up.pt).

### **Material and methods**

**Cyanobacteria strains:** strains of the genera *Cyanobium* and *Synechocystis* (Figure 1 and Table 1).

**Culture conditions:** Z8 medium (25g L<sup>-1</sup> NaCl); 25°C; light/dark cycles of 14/10 hours; continuous aeration

(Figure 2).

Crude extract: 70% ethanolic extraction of freeze dried biomass.

#### **Table 1**. Marine picocyanobacteria strains

| Genus/Strain         | LEGE CODE  | Origin                         | Bioactivities             |
|----------------------|------------|--------------------------------|---------------------------|
| Synechocystis salina | LEGE 06099 | Marine (Intertidal substract)  | Anticancer                |
| <i>Cyanobium</i> sp. | LEGE 06113 | Marine (Intertidal substract)  | Anticancer                |
| Synechocystis salina | LEGE 06155 | Marine (Rock surface scraping) | Anticancer                |
| <i>Cyanobium</i> sp. | LEGE 07175 | Marine (Sea water)             | Anticancer, Antibacterial |

Figure 3. HPLC-PDA carotenoid and chlorophyll profiles of cyanobacteria ethanolic extract from (A) Synechocystis salina LEGE06099, (B) Cyanobium sp. LEGE06113, (C) Synechocystis salina LEGE06155 and (D) Cyanobium sp. LEGE07175, recorded at 450nm. (1, 5)  $\beta$ -carotene oxygenated derivative; (2, 3, 7, 9) Unidentified carotenoids; (8, 10, 11, 14) Lutein derivative; (12) Zeaxanthin; (13) Lutein; (15) Canthaxanthin; (16) and 18) Chlorophyll a derivative; (17) Echinenone; (19) Chlorophyll a and (20)  $\beta$ -carotene.

#### Table 2. Carotenoid abd chlorophyll content (µg g<sup>-1</sup> dry biomass) in the ethanolic extracts of the cyanobacteria strains, by HPLC-PDA

| Peak | Compound                         | RT<br>(min) | Synechocystis salina<br>LEGE06099 | <i>Cyanobium</i> sp.<br>LEGE06113 | Synechocystis salina<br>LEGE06155 | <i>Cyanobium</i> sp.<br>LEGE 07175 |
|------|----------------------------------|-------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| 1    | β-Carotene oxygenated derivative | 10.35       | nd                                | $20.79\pm0.14$                    | nd                                | $16.83\pm \le 0.08$                |
| 2    | Unidentified carotenoid          | 10.85       | $13.26\pm0.42$                    | nd                                | nd                                | nd                                 |
| 3    | Unidentified carotenoid          | 11.27       | nd                                | $8.13\pm \le 0.07$                | nd                                | nd                                 |
| 4    | Lutein derivative                | 12.02       | nd                                | $18.02\pm0.31$                    | nd                                | $14.32\pm \le 0.07$                |
| 5    | β-Carotene oxygenated derivative | 12.51       | nd                                | $38.95 \pm 0.41$                  | nd                                | $25.53\pm0.11$                     |
| 6    | Unidentified carotenoid          | 12.76       | 118.17 ± 1.04                     | nd                                | $14.62\pm0.89$                    | nd                                 |
| 7    | Unidentified carotenoid          | 13.67       | $17.01 \pm 0.15$                  | nd                                | nd                                | nd                                 |
| 8    | Lutein derivative                | 13.91       | nd                                | $29.59 \pm 0.16$                  | nd                                | nd                                 |
| 9    | Unidentified carotenoid          | 14.44       | $39.18 \pm 1.43$                  | nd                                | nd                                | nd                                 |
| 10   | Lutein derivative                | 14.72       | nd                                | nd                                | nd                                | $21.54 \pm 0.29$                   |
| 11   | Lutein derivative                | 15.01       | nd                                | nd                                | nd                                | $12.66\pm0.65$                     |
| 12   | Zeaxanthin                       | 15.36       | 49.82 ± 1.36                      | $25.93\pm0.22$                    | $19.93 \pm 0.16$                  | $16.31\pm0.23$                     |
| 13   | Lutein                           | 16.33       | 79.08 ± 0.44                      | $23.38\pm0.20$                    | 18.94 ± ≤ 0.06                    | $19.91 \pm 0.55$                   |
| 14   | Lutein derivative                | 16.78       | $19.02\pm \leq 0.07$              | $\textbf{8.39} \pm \textbf{0.18}$ |                                   | $9.70 \pm \le 0.08$                |
| 15   | Canthaxanthin                    | 18.81       | nd                                | nd                                | $9.96 \pm \leq 0.07$              | nd                                 |
| 16   | Chlorophyll a derivative         | 26.73       | 634.71 ± 3.18                     | $1796.97 \pm 6.44$                | $557.64 \pm 0.95$                 | $1050.51 \pm 12.98$                |
| 17   | Echinenone                       | 27.54       | 48.37 ± 0.45                      | nd                                | $76.02 \pm 0.70$                  | $9.48\pm0.17$                      |
| 18   | Chlorophyll a derivative         | 28.17       | nd                                | nd                                | $3588.41 \pm 74.03$               | nd                                 |
| 19   | Chlorophyll a                    | 29.01       | nd                                | nd                                | $616.85 \pm 4.04$                 | nd                                 |
| 20   | β-Carotene                       | 35.06       | nd                                | $15.66\pm0.21$                    | $22.96\pm0.93$                    | $8.06\pm0.21$                      |
|      | Total caro                       | tenoids     | $383.89\pm3.54$                   | $188.84\pm0.44$                   | $162.43 \pm 1.29$                 | $169.38 \pm 1.68$                  |
|      | Total chlor                      | ophylls     | 634.71 ± 3.18                     | $1796.97 \pm 6.44$                | $4762.90 \pm 73.72$               | $1050.51 \pm 12.98$                |



Figure 1. Marine cyanobacteria strains



Figure 2. Cyanobacteria culture

| Phytoc  | hemical   | ana | lvsi |
|---------|-----------|-----|------|
| FIIYLUU | ilennicai | ana | 1951 |

**Pigments profile: HPLC-PDA;** comparison of retention times and UV-Vis spectra with those of authentic standards; carotenoids quantification by absorbance recorded in the chromatograms relative to external standards at 450 nm.

**Total phenolic content (TPC):** Folin-Ciocalteu colorimetric assay; expressed in mg gallic acid equivalents (GAE) g<sup>-1</sup> dry biomass.



Table 4. Inhibitory concentration (IC) values of cyanobacteria extracts for DPPH<sup>•</sup> and O<sub>2</sub><sup>•</sup>

| Straine                           | DPPH• (µg mL <sup>-1</sup> ) |                  |                  | O₂•⁻ (μg mL⁻¹)   |                  |                  |
|-----------------------------------|------------------------------|------------------|------------------|------------------|------------------|------------------|
| Strains                           | <b>IC</b> 10                 | IC <sub>25</sub> | IC <sub>50</sub> | IC <sub>10</sub> | IC <sub>25</sub> | IC <sub>50</sub> |
| Synechocystis salina<br>LEGE06099 | 229.04<br>±0.04              | 481.96<br>±0.09  | 863.82<br>±0.17  | 1183.33<br>±0.31 | nd               | nd               |
| <i>Cyanobium</i> sp.<br>LEGE06113 | nd                           | nd               | nd               | nd               | nd               | nd               |
| Synechocystis salina<br>LEGE06155 | 443.95<br>±0.07              | 929.76<br>±0.12  | nd               | 511.08<br>±0.06  | 756.42<br>±0.74  | 1275.86<br>±0.07 |
| <i>Cyanobium</i> sp.<br>LEGE07175 | 710.58<br>±0.02              | nd               | nd               | nd               | nd               | nd               |

#### Table 3. Total phenolic contente of cyanobacteria extracts

| Strains                                  | μg GAE mg <sup>-1</sup> extract | mg GAE g <sup>-1</sup> dry biomass |
|------------------------------------------|---------------------------------|------------------------------------|
| Synechocystis salina<br>LEGE06099        | $19.02\pm0.98$                  | $\textbf{2.45}\pm\textbf{0.13}$    |
| <i>Cyanobium</i> sp.<br>LEGE06113        | $6.8 \pm 0.23$                  | $1.41\pm0.04$                      |
| <i>Synechocystis salina</i><br>LEGE06155 | $14.9\pm0.6$                    | $1.18\pm0.05$                      |
| <i>Cyanobium</i> sp.<br>LEGE07175        | $7.47\pm0.99$                   | $1.09\pm0.14$                      |



Absorbance read at 515 nm

% Radical Scavenging Activity =  $[A0-A1]/A0 \times 100$  Absorbance read at 562 nm % superoxide scavenging activity =  $[A0-A1]/A0 \times 100$ 

### Cell viability assay

**Cell lines**: keratinocytes (HaCat), fibroblasts (3T3L1) and endothelial cells (hCMEC/D3).

**Culture conditions**: DMEM Glutamax (Gibco Invitrogen); 10% FBS (Gibco Invitrogen); 2.5 µg ml<sup>-1</sup>

fungizone (Gibco Invitrogen); 2.5 μg ml<sup>-1</sup> penicillin-streptomycin.

Assays: 96 well plates; cell densities of  $2.5 \times 10^4$  cell mL<sup>-1</sup>,  $3.3 \times 10^4$  cell mL<sup>-1</sup> and  $1.0 \times 10^5$  cel mL<sup>-1</sup>, for

HaCat, 3T3L1 and hCMEC/D3, respectively; six extract concentration (6 to 100 µg mL<sup>-1</sup>); cell viability

determined after 24 and 48 by the MTT assay.

Acknowledgments: This work was done in the framework of the project BLUEHUMAN - BLUE biotechnology as a road for innovation on HUMAN's health aiming smart growth in Atlantic Area - EAPA 151/2016 of the Interreg Atlantic Area Programme funded by the European Regional Development Fund and ALGAVALOR - MicroALGAs: integrated production and valorization of biomass and its various applications, supported by the PORTUGAL 2020 through the European Regional Development Fund (ERDF). This work was supported by the FCT Project UID/Multi/04423/2019 and by the Atlantic Interreg Project – EnhanceMicroAlgae - High added-value industrial opportunities for microalgae in the Atlantic Area (EAPA 338/2016).





Figure 4. Cell viability after 24 and 48h of exposition to cyanobacteria ethanolic (70%) extracts of Synechocystis salina LEGE06155 and Cyanobium sp. LEGE07175, in the three cell lines Keratinocytes (a), fibroblastos (b) and endothelial cells (c). Statistical differences at \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.0001 (One way ANOVA)

A significant increase in cell viability in **fibroblasts** 

Synechocystis salina LEGE06155 and Cyanobium sp. LEGE07175

Stimulation of fibroblast growth and production of the matrix fibers, e.g. collagen and elastin

A significant increase in cell viability in **endothelial cells (increase)** Synechocystis salina LEGE06155 Skin regeneration



- *Synechocystis salina* LEGE06099 was the richest in zeaxanthin, lutein, total carotenoids; *Synechocystis salina* LEGE06155 was the richest in echinenone and total chlorophylls.
- Synechocystis salina LEGE06099 and Synechocystis salina LEGE06155 revealed the antioxidant activities.
- Synechocystis salina LEGE06155 and Cyanobium sp. LEGE07175 Induced an increase in cell viability, especially in fibroblast

Cyanobacteria of the *Synechocystis* genus can be suggested for application in skin care products